SELAMAT DATANG DI OKE022 BLOG..!
SEMOGA ANDA MENIKMATI YANG SAYA SAJIKAN..!(EMANGNYA MAKANAN?!)

Ayo Chattingan


ShoutMix chat widget

Senin, 24 Januari 2011

Materi Olimpiade Astronomi 2010

MATERI OLIMPIADE ASTRONOMI NASIONAL 2010A. Teori
I. Hukum Kepler dan Gravitasi Nowton
1. Dapat menjelaskan tentang bentuk orbit dan gerak benda langit dalam orbit
2. Hubungan periode orbit dan jarak benda langit terhadap titik pusat massa.
3. Dapat menjelaskan tentang gerak benda langit melalui interaksi gaya tarik menarik Newton
4. Dapat menjelaskan tentang hukum kekekalan energi
5. Dapat menurunkan gaya pasang surut dan keterkaitannya dengan fase bulan (misalnya bulan purnama, bulan mati dsb)
6. Bisa mengaplikasikan hukum Neton pada gerak dan lintasan planet, asteroid, komet dan satelit buatan
7. Memahami masalah tiga benda terbatas dan fenomena keberadaan titik
8. Lagrange dan deskripsi permasalahannya


II. Konsep dasar segitiga bola dan Tata Koordinat Astronomi
1. Mengenal persaratan segitiga pada permukaan bola (segitiga bola)
2. Dapat membedakan persaratan segitiga bidang datar dan segitiga bola.
3. Mengenal konsep bola langit, lingkaran besar, lingkaran kecil
4. Mengenal sistem koordinat geografis dalam bola Bumi (lintang dan bujur sebuah tempat)
5. Dapat menjelaskan secara kualitatif sistem koordinat horizontal ( defenisi horizon, tinggi, azimuth, titik Utara, Timur, Selatan dan Barat , titik terbit dan terbenam dsb)
6. Dapat menjelaskan secara kualitatif sistem koordinat equatorial (defenisi ekuator langit, asensiorekta, deklinasi, titik kutub langit, titik Aries dsb)
7. Dapat menjelaskan secara kualitatif sistem koordinat ekliptika ( defenisi ekliptika, bujur dan lintang ekliptika, titik kutub ekliptika, titik Aries dsb


III. Sistem Waktu
1. Dapat memahami dan mengerti konsep waktu matahari (waktu surya)
2. Dapat memahami dan mengerti konsep waktu bintang (waktu sideris)
3. Dapat memahami dan mengerti konsep waktu standard (waktu lokal)
4. Damat memahami sistem kalender (kalendar Yinani dan Romawai Kuno, kalender, kalender Gregorian dan kalender Hijriah)


IV. Matahari dan Tatasurya
1. Dapat menjelaskan alasan matahari menjadi pusat gaya sentral anggota tata surya
3. Dapat menjelaskan Matahari sebagai sumber energi radiasi dalam tatasurya
3. Dapat menjelaskan secara kualitatif teori pembentukan tatasurya (Misalnya
4. teori Laplace dan Kant dsb
5. Mengenal fisik komponen anggota tatasurya (Planet, Komet, Asteroid,
6. Meteor, Materi antar Planet)
7. Memahami susunan dan pergerakan anggota tatasurya
8. Memahami sistem Bumi-Bulan (periode sinodis dan sideris Bulan, fase-fase
9. Bulan, proses gerhana Bulan dan Matahari)
10. Memahami fenomena alam bersifat astronomis (aurora, hujan meteor, dll)


V. Hukum Radiasi,
1. Memahami hukum-hukum Pancaran (Teori Benda Hitam, Fungsi Planck, Hukum Wien) dan mengenal besaran-besaran jumlah energi seperti intensitas
2. spesifik, fluks dan luminositas.
3. Menerapkan hukum-hukum pancaran pada bintang dan benda langit lainnya.
4. Dapat menjelaskan pengaruh jarak terhadap kuat cahaya


VI. Besaran Dasar dan mendasar dalam Astronomi dan Astrofisika
1. Memahami penentuan besaran fisis dan geometri (massa, temperatur, luminositas, radius, jarak) Matahari
2. Memahami konsep penentuan jarak dan radius bintang


VII. Fotometri Bintang
1. Memahami penentuan skala terang bintang (sistem magnitudo)
2. Hubungan magnitudo dan jarak bintang (Hukum Pogson)
3. Memahami penentuan indeks warna bintang dan hubungannya dengan temperatur permukaan bintang
4. Memahami hubungan antara luminositas dengan temperatur/indeks warna bintang (Diagram Hertzprung-Russel)
5. Memahami masalah magnitudo bolometrik dan koreksi bolometrik
6. Memahami konsep pemerahan bintang oleh materi antar bintang


VIII. Spektroskopi Bintang dan Gerak Bintang
1. Memahami konsep pembentukan spektrum
2. Memahami konsep pembentukan spektrum bintang
3. Memahami konsep pengklasifikasian spektrum dan luminositas bintang
4. Menentukan gerak bintang berdasarkan pergeseran garis spektrumnnya (efek Doppler)
5. Memahami konsep gerak diri (proper motion) dan hubungannya dengan gerak tangensial bintang
7. Diagram HR berdasarkan kelas spektrum dan luminositas


IX. Evolusi Bintang
1. Memahami atmosfer dan struktur dalamnya bintang
2. Mengenal teori pembangkit energi dalam bintang
3. Memahami dan mengerti proses evolusi awal bintang (kelahiran bintang)
4. Memahami dan mengerti proses evolusi di deret utama
5. Memahami dan mengerti proses evolusi setelah deret utama
6. Akhir riwayat sebuah bintang (katai putih, supernova, bintang neutron, lubang hitam)




X. Galaksi Bimasakti dan Ektragalaksi
1. Dapat menjelaskan kedudukan dan gerak matahari di dalam galaksi Bima Sakti.
2. Mengenal struktur galaksi (Piringan/Disk, Bulge, Halo, Lengan Spiral dsb)
3. Mengenal komponen galaksi (materi antar bintang, bintang muda, bintang tua, populasi bintang, dsb)
5. Memahami gerak rotasi dan penentuan massa galaksi
6. Dapat menjelaskan ragam galaksi (spiral, eliptikal dan iregular)




IX. Kosmologi
1. Pengenalan dan motivasi studi alam semesta secara keseluruhan dan evolusinya
2. Memahami penentuan harga parameter-parameter kosmologi via estimasijarak, estimasi konstituen alam semesta, estimasi umur alam semesta, dll.
3. Mengenal metode uji model kosmologi (seperti penentuan umur alam semesta yang tak bergantung model, dll), dan juga permasalahan dalam model kosmologi standar serta ide-ide penyelesaiannya (misal: skenario inflasi).
4. Memberikan gambaran besar tentang proses evolusi struktur skala besar.
5. Dapat menjelaskan asal mula terbentuknya jagad raya berdasarkan teori Big Bang.


B. Praktek
I. Pengamatan dengan Mata Bugil
a. Mengenal Rasi Bintang
b. Mengenal Bintang Terang
c. Mengenal Planet Tampak
d. Mengenal Ekliptika dan kutub Ekliptika
e. Mengenal Ekuator Galaksi Bimasakti,
f. Mengenal Ekuator Langit


II. Pengamatan Virtual (dalam hal cuaca tidak memungkinkan untuk pengamatan langsung)
a. Menganal Rasi Bintang
b. Mengenal Bintang Terang
c. Mengenal Planet Tampak
d. Mengenal Ekliptika dan kutub Ekliptika
e. Mengenal Ekuator Galaksi Bimasakti,
f. Mengenal Ekuator Langit


Pengamatan dengan Teleskop dan detektor Astronomi
a. Mengenal komponen-komponen teleskop dan detektornya
b. Menjalankan dan mengarahkan teleskop
c. Merekam dan mengolah data/citra
d. Mengenal cara menganalisis data






Medan, Januari 2010
Tim Pembina Olimpiade Astronomi
SMA Harapan 1 Medan
Ketua,


Sofyanto, S.Pd

sumber: http://pembelajaran-sofyanto.blogspot.com/2010/02/materi-olimpiade-astronomi.html

Jarak Bintang dengan Metode Paralaks Trigonometeri

Pada abad ke-19 dilakukan pengukuran jarak bintang dengan cara Paralaks Trigonometri. Untuk memahami cara ini, lihatlah gambar berikut ini.

Akibat pergerakan Bumi mengelilingi Matahari, bintang terlihat seolah-olah bergerak dalam lintasan elips yg disebut elips paralaktik. Sudut yg dibentuk antara Bumi-bintang-Matahari (p) disebut paralaks bintang. Makin jauh jarak bintang dengan Bumi maka makin kecil pula paralaksnya. Dengan mengetahui besar paralaks bintang tsb, kita dapat menentukan jarak bintang dari hubungan:

tan p = R/d

R adalah jarak Bumi – Matahari, dan d adalah jarak Matahari – bintang. Krn sudut theta sangat kecil persamaan di atas dpt ditulis menjadi

Ø= R/d

pada persamaan di atas p dlm radian. Sebagian besar sudut p yg diperoleh dari pengamatan dlm satuan detik busur (lambang detik busur = {”}) (1 derajat = 3600″, 1 radian = 206265″). Oleh krn itu bila p dalam detik busur, maka

p = 206265 (R/d)

Bila kita definisikan jarak dalam satuan astronomi (SA) (1 SA = 150 juta km), maka

p = 206265/d

Dalam astronomi, satuan jarak untuk bintang biasanya digunakan satuan parsec (pc) yg didefinisi sebagai jarak bintang yg paralaksnya satu detik busur. Dengan begini, kita dapatkan

1 pc = 206265 SA = 3,086 x 10^18 cm = 3,26 tahun cahaya

p = 1/d –> p dlm detik busur, dan d dlm parsec.

Dari pengamatan diperoleh bintang yg memiliki paralaks terbesar adalah bintang Proxima Centauri yaitu sebesar 0″,76. Dengan menggunakan persamaan di atas maka jarak bintang ini dari Mthr (yg berarti jarak bintang dgn Bumi) adalah 1,3 pc = 4,01 x 10^13 km = 4,2 tahun cahaya (yang berarti cahaya yg dipancarkan oleh bintang ini membutuhkan waktu 4,2 tahun untuk sampai ke Bumi). Sebarapa jauhkah jarak tersebut?? Bila kita kecilkan jarak Bumi – Mthr (150 juta km) menjadi 1 meter, maka jarak Mthr – Proxima Centauri menjadi 260 km!!! Karena sebab inilah bintang hanya terlihat sebagai titik cahaya walau menggunakan teleskop terbesar di observatorium Bosscha.

Sebenarnya ada beberapa cara lain untuk mengukur jarak bintang, seperti paralaks fotometri yg menggunakan kuat cahaya sebenarnya dari bintang. Kemudian cara paralaks trigonometri ini hanya bisa digunakan untuk bintang hingga jarak 200 pc saja. Untuk bintang2 yg lebih jauh, jaraknya dapat ditentukan dengan mengukur kecepatan bintang tersebut.


sumber: http://sidikpurnomo.net/jarak-bintang-dengan-metode-paralaks-trigonometeri.html

Boal Langit

Bola langit digunakan untuk menentukan posisi benda-benda langit sehingga memudahkan dalam pengamatan. Untuk keperluan itu, digunakan berbagai sistem koordinat bola langit.

Altitude – Azimuth

Misalkan seorang pengamat di bumi, dalam gambar bola langit posisi pada pusat bola. Bola langit terbagi menjadi 2 hemisphere oleh adanya horizon. Salah satu hemisphere tak terlihat karena terhalang horizon bumi.

Titik pada bola langit yang tepat berada diatas pengamat disebut zenith. Benda langit (misalnya pada posisi x) terlihat pada bagian hemisphere yang tampak, dan memiliki ketinggian sudut jika diukur dari horizon. Ketinggian ini disebut altitude. Busur antara benda langit dengan zenith disebut jarak zenith.

Misalkan altitude dinyatakan dengan a, dan jarak zenith dengan z

Selanjutnya, misalkan ditarik sebuah lingkaran besar dari Z, melintasi x, lalu berpotongan dengan lingkaran besar ekuator. Panjang busur yang diambil dari acuan arah utara (titik U) sampai ke perpotongan tadi disebut azimuth.

Penentuan posisi dengan altitude dan azimuth dapat digunakan untuk keperluan sehari-hari, misalnya mengetahui posisi terbit matahari pada saat ekuinoks, atau misalnya untuk memastikan kemana pandangan harus diarahkan untuk mengamati hilal pada hari tertentu.

Sistem Ekuatorial

Dalam pengamatan dengan alat bantu semacam teleskop, sistem koordinat yang biasa dipakai adalah sistem ekuatorial. Dudukan teleskop kebanyakan didesain ekuatorial untuk memudahkan dalam mengikuti track obyek yang diamati.

Ada 2 jenis sistem koordinat ini, yang satu menggunakan deklinasi dan sudut jam, sedang yang lainnya menggunakan deklinasi dan ascensiorecta. Sistem koordinat ini bergantung pada posisi lintang dan bujur mana pengamat di bumi berada.

Deklinasi – Sudut Jam

Yang dimaksud dengan deklinasi adalah jarak antara benda langit dengan garis ekuator langit. Pada gambar diatas, deklinasi adalah garis DX. Besarnya deklinasi sifatnya tetap, karena itu deklinasi ini dapat digunakan untuk memperkirakan posisi bintang yang terlihat oleh pengamat yang berada pada lintang berbeda-beda. Bintang dengan deklinasi 0o, terlihat oleh
pengamat di ekuator berada di zenith saat melintasi meridian. Oleh pengamat di lintang 30o, bintang yang sama berada di belahan langit selatan dengan altitude 60o saat melintasi meridian.

Pada gambar bola langit, sudut jam adalah sudut XAZ. Acuan pengukuran sudut jam adalah dari meridian pengamat ke meridian obyek. Benda langit yang berada di meridian pengamat disebut memiliki sudut jam 0h. Ketika baru terbit, sudut jam benda langit tersebut adalah – 6h, dan saat tenggelam + 6h.

Deklinasi – Ascensiorecta

Sistem ekuatorial ini digabungkan dengan lintasan semu matahari (ekliptika). Bidang ekliptika ini akan berpotongan dengan bidang ekuator langit, dan titik perpotongannya adalah pada titik ekuinoks. Pada gambar dibawah, titik vernal equinox (Aries) dinyatakan dengan simbol γ.

Ascensiorecta (Right Ascension – RA) adalah busur pada ekuator langit yang ditarik dari titik vernal equinox ke arah timur hingga ke meridian benda langit. Pada gambar dinyatakan dengan busur γC. Besarnya berkisar antara 0h – 24h atau setara dengan perputaran 360o.

Penggunaan RA adalah sebagai alternatif dari penggunaan sudut jam (Hour Angle – HA), karena besarnya HA tidak pernah tetap. Misalnya untuk penulisan katalog, posisi benda langit yang diberikan adalah posisi fixed, karena itu dipilihlah RA sebagai salah satu sumbu koordinat.

SUMBER ARTIKEL http://www.cosmicemission.wordpress.com

Gerhana Matahari Sebagian 4 Januari 2011

Di hari keempat di tahun yang baru ini, kita langsung disambut fenomena astronomi yang menakjubkan: Gerhana Matahari Sebagian (GMS). Gerhana ini akan berlangsung dari pukul 6.40 GMT (13.40 WIB) hingga 11 GMT (18 WIB). Namun sayangnya, GMS ini tidak dapat diamati dari Indonesia karena area yang dilalui oleh bayangan penumbra Bulan hanyalah di kawasan Eropa, Afrika bagian utara, dan sedikit Asia.

GMS 20110104 (Sumber: eclipse.org.uk)

GMS 20110104 (Sumber: eclipse.org.uk)

Gerhana Matahari Sebagian terjadi ketika Matahari, Bulan, dan Bumi membentuk satu garis lurus dan dalam konfigurasi yang sedemikian rupa sehingga hanya bayangan sekundernya saja yang jatuh di permukaan Bumi. Area yang terkena bayangan sekunder dari Bulan (disebut juga penumbra) inilah yang mengalami Gerhana Matahari Sebagian.

Animasi GMS 20110104 (Sumber: eclipse.org.uk)

Animasi GMS 20110104 (Sumber: eclipse.org.uk)

Negara pertama yang dapat melihat gerhana Matahari kali ini adalah Aljazair. Lalu Rusia, Kazakstan, Mongolia, dan Cina di bagian barat laut akan dapat mengamati Matahari terbenam dalam keadaan gerhana. Silakan lihat tautan ini untuk mencari daftar lengkap kota yang terkena akan dapat mengamati GMS kali ini

sumber: http://duniaastronomi.com/2011/01/gerhana-matahari-sebagian-4-januari-2011/

Mengukur Jarak Bintang Dengan Paralaks

Paralaks adalah perbedaan latar belakang yang tampak ketika sebuah benda yang diam dilihat dari dua tempat yang berbeda. Kita bisa mengamati bagaimana paralaks terjadi dengan cara yang sederhana. Acungkan jari telunjuk pada jarak tertentu (misal 30 cm) di depan mata kita. Kemudian amati jari tersebut dengan satu mata saja secara bergantian antara mata kanan dan mata kiri. Jari kita yang diam akan tampak berpindah tempat karena arah pandang dari mata kanan berbeda dengan mata kiri sehingga terjadi perubahan pemandangan latar belakangnya. “Perpindahan” itulah yang menunjukkan adanya paralaks.

Paralaks juga terjadi pada bintang, setidaknya begitulah yang diharapkan oleh pemerhati dunia astronomi ketika model heliosentris dikemukakan pertama kali oleh Aristarchus (310-230 SM). Dalam model heliosentris itu, Bumi bergerak mengelilingi Matahari dalam orbit yang berbentuk lingkaran. Akibatnya, sebuah bintang akan diamati dari tempat-tempat yang berbeda selama Bumi mengorbit. Dan paralaks akan mencapai nilai maksimum apabila kita mengamati bintang pada dua waktu yang berselang 6 bulan (setengah periode revolusi Bumi). Namun saat itu tidak ada satu orangpun yang dapat mendeteksinya sehingga Bumi dianggap tidak bergerak (karena paralaks dianggap tidak ada). Model heliosentris kemudian ditinggalkan orang dan model geosentrislah yang lebih banyak digunakan untuk menjelaskan perilaku alam semesta.

Paralaks pada bintang baru bisa diamati untuk pertama kalinya pada tahun 1837 oleh Friedrich Bessel, seiring dengan teknologi teleskop untuk astronomi yang berkembang pesat (sejak Galileo menggunakan teleskopnya untuk mengamati benda langit pada tahun 1609). Bintang yang ia amati adalah 61 Cygni (sebuah bintang di rasi Cygnus/angsa) yang memiliki paralaks 0,29″. Ternyata paralaks pada bintang memang ada, namun dengan nilai yang sangat kecil. Hanya keterbatasan instrumenlah yang membuat orang-orang sebelum Bessel tidak mampu mengamatinya. Karena paralaks adalah salah satu bukti untuk model alam semesta heliosentris (yang dipopulerkan kembali oleh Copernicus pada tahun 1543), maka penemuan paralaks ini menjadikan model tersebut semakin kuat kedudukannya dibandingkan dengan model geosentris Ptolemy yang banyak dipakai masyarakat sejak tahun 100 SM.

Setelah paralaks bintang ditemukan, penghitungan jarak bintang pun dimulai. Lihat ilustrasi di bawah ini untuk memberikan gambaran bagaimana paralaks bintang terjadi. Di posisi A, kita melihat bintang X memiliki latar belakang XA. Sedangkan 6 bulan kemudian, yaitu ketika Bumi berada di posisi B, kita melihat bintang X memiliki latar belakang XB. Setengah dari jarak sudut kedua posisi bintang X itulah yang disebut dengan sudut paralaks. Dari sudut inilah kita bisa hitung jarak bintang asalkan kita mengetahui jarak Bumi-Matahari.

Paralaks Dari Orbit

Dari geometri segitiga kita ketahui adanya hubungan antara sebuah sudut dan dua buah sisi. Inilah landasan kita dalam menghitung jarak bintang dari sudut paralaks (lihat gambar di bawah). Apabila jarak bintang adalah d, sudut paralaks adalah p, dan jarak Bumi-Matahari adalah 1 SA (Satuan Astronomi = 150 juta kilometer), maka kita dapatkan persamaan sederhana

tan p = 1/d

atau d = 1/p, karena p adalah sudut yang sangat kecil sehingga tan p ~ p.

Paralaks Bintang

Jarak d dihitung dalam SA dan sudut p dihitung dalam radian. Apabila kita gunakan detik busur sebagai satuan dari sudut paralaks (p), maka kita akan peroleh d adalah 206265 SA atau 3,09 x 10^13 km. Jarak sebesar ini kemudian didefinisikan sebagai 1 pc (parsec, parsek), yaitu jarak bintang yang mempunyai paralaks 1 detik busur. Pada kenyataannya, paralaks bintang yang paling besar adalah 0,76″ yang dimiliki oleh bintang terdekat dari tata surya, yaitu bintang Proxima Centauri di rasi Centaurus yang berjarak 1,31 pc. Sudut sebesar ini akan sama dengan sebuah tongkat sepanjang 1 meter yang diamati dari jarak 270 kilometer. Sementara bintang 61 Cygni memiliki paralaks 0,29″ dan jarak 1,36 tahun cahaya (1 tahun cahaya = jarak yang ditempuh cahaya dalam waktu satu tahun = 9,5 trilyun kilometer) atau sama dengan 3,45 pc.

Hingga tahun 1980-an, paralaks hanya bisa dideteksi dengan ketelitian 0,01″ atau setara dengan jarak maksimum 100 parsek. Jumlah bintangnya pun hanya ratusan buah. Peluncuran satelit Hipparcos pada tahun 1989 kemudian membawa perubahan. Satelit tersebut mampu mengukur paralaks hingga ketelitian 0,001″, yang berarti mengukur jarak 100.000 bintang hingga 1000 parsek. Sebuah katalog dibuat untuk mengumpulkan data bintang yang diamati oleh satelit Hipparcos ini. Katalog Hipparcos yang diterbitkan di akhir 1997 itu tentunya membawa pengaruh yang sangat besar terhadap semua bidang astronomi yang bergantung pada ketelitian jarak.


sumber: http://duniaastronomi.com/2009/05/mengukur-jarak-bintang-dengan-paralaks/#more-199

Koordinat Horison (Alt-Azimuth)

Pada tulisan sebelumnya, kita sudah membahas koordinat langit ekuatorial. Sekarang, giliran koordinat horison (alt-azimuth) yang dibahas. Seperti apa sebenarnya koordinat ini, dan apa bedanya dengan koordinat ekuatorial? Berikut pembahasannya.

Koordinat alt-azimuth adalah menentukan posisi benda langit yang hanya berlaku secara lokal di sekitar pengamat saja. Nama koordinat ini ditentukan dari dua kata yang didefinisikan sebagai penentu posisi benda, yaitu altitud (disingkat alt) dan azimuth. Istilah-istilah penting lainnya yang digunakan dalam koordinat ini adalah horison, zenith, dan nadir.

Horison adalah bidang datar yang menjadi pijakan pengamat, yang menjadi batas antara belahan langit yang dapat diamati dengan yang tidak dapat diamati. Apabila kita berada di tengah-tengah laut, kita akan melihat horison ini sebagai pertemuan antara langit dengan permukaan laut. Kemudian zenith adalah sebuah titik khayal di langit yang berada tepat di atas pengamat. Sedangkan nadir adalah kebalikan dari zenith, yaitu sebuah titik yang berada di bawah pengamat. Kedua titik ini terletak tegak lurus terhadap horison.

Bagaimana menentukan posisi sebuah bintang menurut koordinat alt-azimuth ini? Altitud (a) menunjukkan ketinggian bintang dari horison. Apabila sebuah bintang baru terbit atau tenggelam, ketinggiannya dari horison adalah 0 derajat. Dan bintang yang berada di zenith memiliki altitud 90 derajat. Azimuth (A) menyatakan sudut yang dibentuk antara bintang dengan titik utara atau selatan. Pengamat yang berada di belahan bumi utara menghitung azimuth bintang dari titik utara ke arah timur (searah putaran jarum jam). Sedangkan pengamat yang berada di belahan bumi selatan menghitung azimuth bintang dari titik selatan ke arah timur (berlawanan arah putaran jarum jam). Besarnya azimuth adalah dari 0 derajat hingga 360 derajat.

Sebagai contoh, untuk pengamat yang berada di Semarang (selatan khatulistiwa), sebuah bintang yang berada 45 derajat di atas titik utara memiliki azimuth 180 derajat. Sedangkan bagi pengamat yang ada di Aceh misalnya, bintang yang berada 45 derajat di atas titik utara memiliki azimuth 0 derajat (Lihat juga gambar di bawah).

Lalu apa kelebihan dan kekurangan sistem koordinat ini jika dibandingkan dengan sistem koordinat ekuatorial? Penentuan nilai altitud dan azimuth dari sebuah objek yang relatif mudah menjadi kelebihan sistem koordinat ini. Untuk menentukan altitud, kita bisa gunakan sextant, sedangkan untuk menentukan azimuth kita dapat gunakan kompas. Titik acuan koordinatnya (horison dan titik utara atau selatan) pun jelas dan dapat kita tentukan dengan mudah. Hal ini jauh lebih mudah Jika dibandingkan dengan menentukan titik gamma, ekuator langit, asensiorekta dan deklinasi pada sistem koordinat ekuatorial.

Sementara kekurangan sistem koordinat ini adalah bahwa, seperti yang sudah saya sebutkan di atas, koordinat alt-azimuth hanya berlaku lokal (di sekitar pengamat) saja. Ketinggian dan azimuth sebuah bintang pada saat yang sama akan memiliki nilai yang berbeda jika dilihat dari tempat yang jauh. Misalkan seorang pengamat di Semarang ingin memberitahukan sebuah objek yang ditemukannya kepada pengamat lain di Bandung dengan memberikan koordinat alt-azimuth objek tersebut, maka pengamat di Bandung akan kesulitan menemukan objek yang dimaksud.


sumber: http://duniaastronomi.com/2009/02/koordinat-horison-alt-azimuth/

Mengukur Jarak Dengan Bintang Cepheid

Di tulisan terdahulu, kita dapat menentukan jarak bintang dengan menghitung paralaksnya. Namun metode paralaks itu hanya dapat digunakan untuk bintang-bintang dekat saja karena teknologi yang kita miliki belum dapat menghitung paralaks dengan ketelitian tinggi. Jarak terjauh yang bisa diukur dengan metode paralaks hanya beberapa kiloparsek saja. Lalu bagaimana kita menghitung jarak bintang-bintang yang lebih jauh? Atau bahkan menghitung jarak galaksi-galaksi yang jauh? Salah satu caranya adalah dengan menggunakan hubungan periode-luminositas bintang variabel Cepheid.

Sejarah metode penghitungan jarak ini berawal dari sebuah penelitian tentang hasil pengamatan terhadap bintang variabel (bintang yang kecerlangannya berubah-ubah) yang ada di galaksi Awan Magellan Besar dan Awan Magellan Kecil (LMC dan SMC). Saat itu Henrietta Leavitt, astronom wanita asal Amerika Serikat, membuat katalog yang berisi 1777 bintang variabel dari penelitian tersebut. Dari katalog yang ia buat diketahui bahwa terdapat beberapa bintang yang menunjukkan hubungan antara kecerlangan dengan periode variabilitas. Bintang yang memiliki kecerlangan lebih besar ternyata memiliki periode varibilitas yang lebih lama dan begitu pula sebaliknya. Bentuk kurva cahaya bintang variabel jenis ini juga unik dan serupa, yang ditandai dengan naiknya kecerlangan bintang secara cepat dan kemudian turun secara perlahan.

Bentuk kurva cahaya seperti itu ternyata sama dengan kurva cahaya bintang delta Cephei yang diamati pada tahun 1784. Karena itulah bintang variabel jenis ini diberi nama bintang variabel Cepheid. Penamaan ini tidak berubah walaupun belakangan ditemukan juga kurva cahaya yang sama dari bintang Eta Aquilae yang diamati beberapa bulan sebelum pengamatan delta Cephei.

Kurva cahaya variabel Cepheid. Sumber: rpi.edu

Kurva cahaya variabel Cepheid. Sumber: rpi.edu

Hubungan sederhana antara periode dan luminositas bintang variabel Cepheid ini bisa digunakan dalam menentukan jarak karena astronom sudah mengetahui adanya hubungan antara luminositas dengan kecerlangan/magnitudo semu bintang yang bergantung pada jarak. Dari pengamatan bintang Cepheid kita bisa dapatkan periode variabilitas dan magnitudonya. Kemudian periode yang kita peroleh bisa digunakan untuk menghitung luminositas/magnitudo mutlak bintangnya dengan formula M = -2,81 log(P)-1,43. Karena luminositas/magnitudo mutlak dan magnitudo semu berhubungan erat dalam formula Pogson (modulus jarak), maka pada akhirnya kita bisa dapatkan nilai jarak untuk bintang tersebut.

Kunci penentu agar metode ini dapat digunakan adalah harus ada setidaknya satu bintang variabel Cepheid yang jaraknya bisa ditentukan dengan cara lain, misalnya dari metode paralaks trigonometri . Jarak bintang akan digunakan untuk menghitung luminositasnya dan selanjutnya bisa digunakan sebagai pembanding untuk semua bintang Cepheid. Oleh karena itu, astronom sampai sekarang masih terus berusaha agar proses kalibrasi ini dilakukan dengan ketelitian yang tinggi supaya metode penentuan jarak ini memberikan hasil dengan akurasi tinggi pula.

Cepheid Di Galaksi M100

Cepheid Di Galaksi M100. Sumber: Hubblesite

Menghitung jarak bintang variabel Cepheid menjadi sangat penting karena kita jadi bisa menentukan jarak gugus bintang atau galaksi yang jauh asalkan di situ ada bintang Cepheid yang masih bisa kita deteksi kurva cahayanya. Di sinilah keunggulan metode ini dibandingkan dengan paralaks, yang hanya bisa digunakan untuk bintang-bintang dekat saja.

Lalu apa sebenarnya yang terjadi pada bintang Cepheid? Bintang ini mengalami perubahan luminositas karena radiusnya berubah membesar dan mengecil. Proses ini terjadi pada salah satu tahapan evolusi bintang, yaitu ketika sebuah bintang berada pada fase raksasa atau maharaksasa merah. Jadi dengan mempelajari bintang variabel Cepheid kita bisa menghitung jarak sekaligus mempelajari salah satu tahapan evolusi bintang.


sumber: http://duniaastronomi.com/2010/03/mengukur-jarak-dengan-bintang-cepheid/

Berita Bohong Mars

Apakah Anda pernah menerima email/kabar seperti berikut ini?

Two moons on 27 August, 2007

27th Aug the Whole World is waiting for……… ….

Planet Mars will be the brightest in the night sky starting August.

It will look as large as the full moon to the naked eye. This will cultivate on Aug. 27, 2007, when Mars comes within 34.65M miles of earth. Be sure to watch the sky on Aug. 27, 2007 at 12:30 am. It will look like the earth has 2 moons. The next time Mars may come this close is in 2287.

Share this with your friends as NO ONE ALIVE TODAY will ever see it again.

//
Dua buah bulan pada 27 Agustus 2007. Planet Mars akan menjadi objek yang paling terang di langit mulai bulan Agustus. Planet ini jika dilihat dengan mata telanjang akan terlihat sebesar Bulan Purnama. … .

Hal ini akan menyebabkan Bumi seperti memiliki dua buah bulan. Waktu berikutnya untuk untuk peristiwa ini terjadi lagi adalah tahun 2287. Sebarkan pada teman-teman karena TIDAK ADA YANG DAPAT MELIHATNYA SEBANYAK DUA KALI DALAM HIDUPNYA.
//

Sebenarnya ini adalah berita bohong, mengapa?Saya beritahukan di sini bahwa sebenarnya dengan teleskop terbesar/terkuat yang pernah dibuat pun, Mars tidak akan terlihat sebesar bulan purnama yang dilihat dengan mata telanjang. Apalagi kalau melihat Mars tanpa alat bantu optik seperti teleskop (hanya dengan mata telanjang). Berikut ini penjelasan fisikanya.

Mari kita hitung seberapa besar diameter sudut dari Mars, serta Bulan dan Matahari sebagai perbandingan. Mars memiliki diameter 6794 km. Jarak terdekat Mars dari Bumi adalah 55.76 juta km, yang terjadi pada tanggal 27 Agustus 2003 yang lalu. Dan jarak terdekat ini tidak akan terjadi lagi hingga tahun 2287 (coba lihat halaman ini). Pada jarak terdekatnya itu, jika Mars diamati dengan mata telanjang maka hanya akan tampak sebagai sebuah bintang, berupa titik yang sangat terang. Diameter sudutnya hanya 25,11″. Setelah tahun 2003 yang lalu, jarak Mars dari Bumi akan terus membesar, karena sifat orbit yang dimiliki kedua planet ini. Untuk tahun 2007 ini, tentu saja jaraknya lebih jauh dari tahun 2003 lalu (lihat halaman ini).

Sekarang kita hitung diameter sudut Bulan. Diameternya adalah 3476 km, jaraknya dari Bumi adalah 384403 km. Kombinasi jarak dan diameter Bulan ini memberikan penampakan diameter sudut Bulan sebesar sekitar 31 menit busur (1 menit busur = 60 detik busur). Lihat perbandingan gambar Bulan dan Mars yang saya kutip dari mutoha.

Bulan dan Mars

Bagaimana dengan Matahari, yang memiliki diameter 0.696 juta km dan jarak rata-rata dari Bumi 150 juta km? Dari Bumi, diameter sudut matahari adalah sebesar hampir 32 menit busur (berbeda sedikit dengan Bulan). Karena besarnya hampir sama, pada suatu saat Bulan dapat saja menutupi Matahari, yang disebut dengan peristiwa Gerhana Matahari Total. Diameter sudut yang hampir sama dengan Bulan ini diperoleh dari diameter yang jauh lebih besar dari Bulan dan jarak yang jauh lebih besar daripada jarak Bumi – Bulan.

Untuk mendapatkan ukuran sebesar Bulan purnama dari Bumi, Mars harus diperbesar hingga berdiameter 486000 km dengan jarak yang tetap. Diameter ini adalah sekitar 70 kali diameter sebenarnya. Cara lain yang bisa dilakukan untuk membuat Mars terlihat sebesar Bulan purnama adalah dengan memindahkannya pada jarak 778535 km dengan diameter yang tetap. Jarak ini adalah dua kali jarak Bumi ke Bulan.

Jadi sekali lagi saya simpulkan, berita ini BOHONG, karena ada kesalahan di dalamnya. Orang yang menyebarkannya adalah orang yang tidak bertanggung jawab. Sebenarnya berita ini pernah keluar pada tahun 2003 lalu, dalam rangka kejadian langka tersebut. Tetapi kemudian setiap 2 tahun sekali setelah itu, berita ini keluar terus. Dan masyarakat masih saja menanggapinya dengan terus menyebarkannya ke orang-orang.

Jadi kalau Anda dan teman-teman Anda pernah menerima kabar seperi ini, sebaiknya Anda sebarkan tulisan ini ke teman-teman Anda.

Demi astronomi Indonesia yang lebih baik.


sumber: http://duniaastronomi.com/2009/02/berita-bohong-mars/#more-63

Mengenal Bulan Lebih Dekat

Bulan (Moon dalam bahasa Inggris, Luna dalam bahasa Romawi, Artemis dalam bahasa Yunani) adalah satu-satunya satelit alami yang Bumi miliki. Jika dilihat dari posisinya, Bulan adalah benda angkasa yang paling dekat dari Bumi. Bulan juga menjadi benda kedua yang paling terang di langit setelah Matahari (magnitudo Bulan -12,7, Matahari -26,4) dan satu-satunya benda langit yang permukaannya dapat diamati dengan mudah.

Permukaan Bulan
Dari Bumi, kita bisa melihat Bulan dengan cukup jelas tanpa menggunakan alat bantu optik seperti teleskop dan binokular. Tampaklah bahwa Bulan memiliki permukaan yang kecerahannya tidak seragam, ada bagian yang terang dan ada yang gelap. Dan secara sekilas, Bulan tampak memiliki permukaan yang datar/halus. Begitulah anggapan masyarakat di jaman dahulu. Pandangan tersebut baru berubah ketika Galileo menggunakan teleskopnya untuk mengamati Bulan 400 tahun yang lalu (inilah latar belakang pencanangan tahun 2009 ini sebagai Tahun Astronomi Internasional atau IYA 2009). Galileo mendapati bahwa permukaan Bulan tidaklah rata, tetapi berbukit-bukit dan memiliki banyak kawah. Dan karakteristik permukaan Bulan itu juga berhubungan dengan kecerahannya. Daerah yang tampak terang memiliki permukaan yang berbukit-bukit dan penuh kawah, sedangkan daerah yang tampak lebih gelap adalah permukaan yang memiliki sedikit kawah. Mereka pun kemudian memberikan nama dataran tinggi untuk bagian yang terang dan penuh dengan kawah, serta “mare” (berarti laut dalam bahasa Latin) untuk bagian yang gelap dan sedikit kawah. Penamaan lautan ini, sebenarnya adalah sebuah salah kaprah karena di Bulan tidak ada laut, dilakukan karena dataran gelap tersebut tampak seperti lautan.

Kawah Di Bulan (solarviews.com)

Kawah Di Bulan (solarviews.com)

Perbedaan kecerahan di permukaan Bulan itu ternyata disebabkan oleh perbedaan material batuan yang terkandung di kedua kawasan itu. Batuan yang berada di bagian dataran tinggi adalah anorthosit yang mengandung banyak kalsium dan aluminum silikat. Sedangkan batuan yang menyusun mare adalah basalt, suatu lava beku yang banyak mengandung besi, magnesium, dan titanium silikat. Pengetahuan ini sudah dikonfirmasi dengan contoh batuan yang diambil dari Bulan, yang berjumlah tidak kurang dari 382 kg.

Berbeda dengan Bumi, Bulan tidaklah memiliki atmosfer. Ada dua alasan yang menyebabkannya. Alasan yang pertama adalah karena bagian dalam Bulan terlalu dingin untuk hadirnya aktivitas vulkanik. Di Bumi, aktivitas vulkanik termasuk salah satu penghasil gas dan pembentuk atmosfer di masa awal pembentukannya. Sementara alasan kedua memegang peranan yang lebih penting lagi, yaitu karena massa Bulan terlalu kecil sehingga gaya gravitasi yang dihasilkan tidak cukup untuk menahan gas-gas yang terbentuk. Kecepatan lepas di Bulan hanyalah 2,4 km/detik, bandingkan dengan kecepatan lepas di Bumi yang sebesar 11,2 km/detik. Dengan kecepatan lepas sekecil itu, gas yang ada di Bulan dapat bergerak lepas dari pengaruh gravitasi Bulan, sehingga tidak ada udara di permukaannya.

Ketiadaan atmosfer di Bulan menyebabkan banyaknya kawah di permukaannya. Benda-benda yang mengarah ke Bulan, yang berukuran besar ataupun kecil, dapat langsung menumbuk permukaannya tanpa ada penghambat. Berbeda dengan Bumi karena atmosfernya menyebabkan benda-benda asing yang mengarah ke Bumi akan mengalami gesekan hingga berpijar, terkikis, dan berkurang ukurannya. Peristiwa berpijarnya benda asing yang masuk ke atmosfer Bumi ini kita lihat sebagai meteor. Akibatnya, benda-benda yang kecil akan habis terbakar dan hanya benda-benda yang cukup besar saja yang akan menumbuk permukaan sehingga kawah yang ditemukan di permukaan Bumi tidaklah sebanyak di Bulan.

Dari usia batuan di daerah dataran tingginya, tumbukan-tumbukan benda asing yang menghasilkan kawah di permukaan Bulan diperkirakan terjadi tidak lama setelah Bulan terbentuk, yaitu pada sekitar 4,5 miliar tahun yang lalu. Dan di masa-masa awal setelah Bulan terbentuk itu, material yang berada di bagian permukaan sudah mulai mengeras sementara di dalamnya masih berada dalam bentuk lelehan. Sebelum bagian keraknya menebal, sebuah benda asing yang cukup besar menumbuk Bulan hingga material lava di dalamnya mengalir keluar dan mengisi kawah yang terbentuk. Peristiwa inilah yang menghasilkan mare di Bulan. Setelah mare terbentuk, hanya sedikit benda asing yang menumbuknya sehingga bagian mare hanya memiliki sedikit kawah seperti yang sekarang kita amati.

Fase Bulan
Sebagai satelit Bumi, Bulan bergerak mengelilingi Bumi dengan periode 27,3 hari (periode revolusi). Uniknya, periode revolusi Bulan itu sama dengan periode rotasinya (berputar pada porosnya), sehingga wajah Bulan yang terlihat dari Bumi akan selalu tetap dan kita tidak akan pernah dapat melihat wajah Bulan yang membelakangi Bumi. Lintasan orbit Bulan tidaklah berhimpit dengan orbit revolusi Bumi (ekliptika), melainkan menyilang sebesar 5,2 derajat, sehingga kita dapat melihat fase Bulan purnama atau gerhana Bulan secara bergantian. Karena apabila lintasan orbitnya berhimpit dengan ekliptika, kita tidak akan pernah dapat mengamati Bulan purnama melainkan hanya gerhana Bulan setiap bulannya.

Dalam perjalanannya mengelilingi Bumi, posisi Bulan berubah-ubah relatif terhadap Matahari dan Bumi sehingga bagian terang di Bulan yang terlihat dari Bumi berbeda-beda dari waktu ke waktu secara periodik. Perubahan ini disebut dengan perubahan fase, yang membutuhkan waktu yang sedikit lebih lama dari periode rotasinya, yaitu 29,5 hari (disebut dengan periode sinodis). Dan dalam rentang waktu tersebut, Bulan juga akan terbit pada waktu yang berbeda setiap harinya.

Apabila Bulan berada di antara Matahari dan Bumi, bagian Bulan yang terkena cahaya Matahari tidak dapat dilihat dari Bumi sehingga Bulan tidak akan dapat diamati juga. Saat ini, Bulan yang berada pada fase mati (atau disebut juga Bulan baru) akan terbit bersamaan dengan Matahari. Setelah fase ini bagian terang di Bulan yang terlihat dari Bumi bertambah sehingga Bulan tampak berbentuk sabit (fase sabit awal) dan waktu terbitnya menjadi semakin siang. Kemudian di hari-hari berikutnya, bentuk sabitnya akan semakin membesar hingga akhirnya setengah bagian Bulan yang menghadap Bumi menjadi terang, yang berarti Bulan berada pada fase setengah awal atau kuartir awal. Jarak sudut antara Bulan dan Matahari saat ini adalah 90 derajat dan Bulan yang berumur sekitar 7 hari ini akan terbit 6 jam setelah Matahari.

Dari fase setengah awal, bagian yang terang di wajah Bulan akan terus bertambah hingga tampak benjol dan akhirnya mencapai bulat penuh (fase purnama) pada umur antara 14 – 15 hari. Pada fase purnama ini, Bulan akan terbit bersamaan dengan terbenamnya Matahari. Setelah itu, wajah Bulan yang terang akan berkurang hingga setengah (fase setengah akhir, terbit 18 jam setelah Matahari tenggelam) pada umur 21 hari, kemudian berbentuk sabit (fase sabit akhir, terbit 3 jam sebelum Matahari terbit) dan akhirnya kembali menjadi fase Bulan baru/mati.

Karena dapat diamati dengan jelas, penduduk Bumi pun memanfaatkan fase Bulan sebagai penanda waktu/sistem kalender. Ada banyak sistem kalender yang didasarkan pada Bulan, dua diantaranya adalah sistem kalender Islam dan Jawa. Jumlah hari dalam satu bulan di kedua sistem itu ditentukan dari periode sinodis Bulan. Dalam kedua sistem kalender tersebut terdapat 12 bulan dalam setahun yang masing-masing bulannya terdiri dari 29 atau 30 hari. Di kalender Jawa, bulan pertama memiliki 30 hari dan bulan berikutnya memiliki 29 hari, begitu seterusnya secara bergantian hingga bulan ke-12. Sedangkan di kalender Islam yang banyak digunakan saat ini, jumlah hari dalam sebulan ditentukan dari perhitungan usia Bulan sehingga bisa saja terdapat dua bulan yang berurutan memiliki jumlah hari yang sama.

Ciri Fisik
Bulan adalah satelit kelima terbesar di Tata Surya kita setelah Ganymede, Titan, Callisto, dan Io. Diameternya adalah sebesar 3.476 km, sepertiga dari diameter Bumi. Sedangkan massanya adalah sebesar 7,35 x 10^22 kg. Dengan ukuran dan massa sebesar itu, gaya tarik gravitasi di Bulan lebih kecil daripada di Bumi, yaitu hanya sebesar 16,5% dari gravitasi di Bumi (1,62 m/s^2 berbanding 9,8 m/s^2).

Perbandingan Ukuran Satelit

Perbandingan Ukuran Satelit (solarviews.com)

Jarak rata-rata Bulan dari Bumi adalah sejauh 384.403 km. Pada jarak ini, Bulan akan tampak seukuran dengan Matahari yang jaraknya 400 kali lebih jauh dan ukurannya 400 kali lebih besar daripada Bulan. Karena ukuran Bulan dan Matahari di langit setara inilah penduduk Bumi dapat mengalami gerhana Matahari, yaitu ketika terhalangnya cahaya Matahari yang seharusnya sampai ke permukaan Bumi karena Bulan berada di antara Bumi dan Matahari.

Bulan memiliki interior yang cukup unik. Bagian kerak Bulan diketahui lebih tebal di permukaan yang membelakangi Bumi dibandingkan dengan permukaan yang menghadap Bumi. Hal ini menjelaskan mengapa di permukaan Bulan yang menghadap Bumi terdapat banyak mare, yaitu karena tipisnya bagian kerak sehingga tumbukan benda yang cukup besar dapat menghancurkan kerak dan membuat material cair mengalir keluar ke permukaan. Keunikan lainnya adalah posisi bagian inti Bulan yang tidak berada tepat di tengah, melainkan sedikit bergeser ke arah Bumi. Penyebabnya diperkirakan karena saat pembentukannya dahulu, gaya tarik Bumi sedemikian kuatnya sehingga dapat menggeser bagian inti Bulan tersebut. Dan akibat pergeseran ini, bagian interior Bulan di bawah permukaan yang menghadap Bumi mendingin lebih lama daripada bagian interior yang membelakangi Bumi. Sehingga terjadilah perbedaan ketebalan kerak di kedua bagian permukaan tersebut.

Kerapatan Bulan yang hanya sebesar 3,3 g/cm^3 menunjukkan sedikitnya kandungan besi dalam interior Bulan. Bagian inti Bulan yang berupa material padat dan berukuran kecil, serta lambatnya rotasi Bulan membuat astronom berkesimpulan bahwa bagian inti Bulan tidak dapat membangkitkan medan magnet sehingga tidak ada gunanya kita membawa kompas ke sana. Hal ini sudah dikonfirmasi oleh para astronot yang mendarat di Bulan. Namun penelitian juga menunjukkan adanya jejak magnetisme pada batuan Bulan. Artinya, dahulu Bulan pernah memiliki medan magnet, yaitu ketika bagian intinya masih berupa material lelehan.

Bulan kini diperkirakan berusia lebih dari 4,5 miliar tahun. Asal-usulnya belum diketahui secara pasti, namun setidaknya ada empat teori yang mencoba menjelaskan asal-usul Bulan. Pertama, Bulan terbentuk bersamaan dengan Bumi. Kedua, Bulan terbentuk ketika Bumi berputar begitu cepat sehingga sebagian materialnya terlontar dan memadat menjadi Bulan. Ketiga, Bulan adalah benda angkasa yang ditangkap oleh gaya gravitasi Bumi. Ketiga teori ini sudah ada sejak sebelum contoh batuan Bulan diambil oleh astronot Apollo. Masing-masing teori tersebut akan menghasilkan tiga variasi komposisi material Bulan yang berbeda-beda. Untuk membuktikan teori mana yang cocok, dibutuhkan contoh batuan Bulan agar dapat diteliti komposisinya.

Menurut teori pertama, komposisi material penyusun Bulan akan sama dengan Bumi karena keduanya terbentuk dari material yang sama. Sedangkan menurut teori kedua, akan ada kemiripan dalam komposisi batuan keduanya namun tidak akan sama secara keseluruhan karena material pembentuk Bulan berasal dari sebagian material Bumi, yaitu hanya dari bagian kerak Bumi saja. Dan menurut teori ketiga, material Bumi dan Bulan akan sama sekali berbeda. Setelah contoh batuan Bulan diambil dan diteliti, ternyata ketiga teori tersebut tidak dapat menjelaskan hasil penelitian yang diperoleh karena ada material yang komposisinya sama dan ada juga material yang komposisinya berbeda dengan yang ada di Bumi.

Batuan Bulan

Batuan Bulan (Britannica)

Dari hasil penelitian tersebut muncullah teori keempat yang menyebutkan bahwa Bulan terbentuk setelah terjadi suatu tumbukan hebat antara benda angkasa sebesar Mars dengan Bumi muda. Akibat dari tumbukan tersebut, sebagian material Bumi dan benda asing itu terlontar dan sembari mengelilingi Bumi, material campuran tersebut kemudian memadat. Dan kini campuran antara material penyusun Bumi dan benda asing itu kita lihat sebagai Bulan. Teori ini juga dapat menjelaskan penyebab kemiringan sumbu rotasi Bumi sebesar 23,5 derajat. Dengan begitu, teori ini pun menjadi teori yang diterima oleh banyak pihak hingga saat ini.

Interaksi Bulan dan Bumi
Sebagaimana dinyatakan dalam Hukum Newton bahwa benda bermassa akan menghasilkan pengaruh gravitasi bagi benda-benda lain, Bumi dan Bulan juga berinteraksi secara gravitasi. Pengaruh gravitasi Bumi menyebabkan Bulan bergerak mengelilingi Bumi dan posisi bagian inti Bulan tidak tepat berada di pusatnya. Sedangkan pengaruh gravitasi Bulan menyebabkan semua materi yang ada di Bumi seperti daratan, atmosfer, dan air mengalami gaya tarik ke arah Bulan. Namun karena daratan terdiri atas materi yang tidak dapat bergerak bebas dan kita tidak dapat mengamati atmosfer dengan mudah, maka pengaruh gravitasi Bulan pada air laut sangat mudah untuk kita amati.

Gambaran pasang naik dan pasang surut

Gambaran pasang naik dan pasang surut (Cockpit Cards)

Gaya tarik Bulan mengakibatkan ketinggian permukaan air laut berubah secara periodik. Perubahan tersebut biasa disebut dengan pasang naik (ketinggian air laut bertambah) dan pasang surut (ketinggiannya berkurang). Secara umum bagi pengamat di ekuator Bumi, pasang naik akan terjadi apabila Bulan berada di meridian (saat kulminasi atas) dan ketika Bulan kulminasi bawah. Sedangkan pasang surut akan terjadi ketika Bulan berada di horison (saat terbit dan terbenam). Jadi setiap lokasi di Bumi akan mengalami pasang naik dan surut secara bergantian setiap sekitar 6 jam sekali.

Pasang naik maksimum akan terjadi ketika Matahari, Bumi, dan Bulan berada pada satu garis lurus, yaitu pada saat terjadinya Bulan mati atau purnama. Saat itu, air laut mengalami gaya tarik oleh gravitasi Bulan dan Matahari sekaligus (gravitasi Matahari tidak sebesar gravitasi Bulan). Sedangkan saat Bulan berada pada fase setengah awal dan akhir, pasang naik akan menjadi minimum karena posisi Bulan dan Matahari yang terpisah 90 derajat menyebabkan gaya gravitasi Bulan dan Matahari saling meniadakan.

Gravitasi Bulan juga memberi pengaruh positif terhadap iklim di Bumi, yang dipengaruhi oleh kemiringan sumbu rotasi Bumi. Dengan adanya Bulan, kemiringan sumbu rotasi Bumi relatif tetap sepanjang masa, sehingga iklim di Bumi juga relatif stabil. Apabila Bulan tidak ada, diperkirakan kemiringan sumbu rotasi Bumi akan mengalami perubahan yang sangat ekstrim sehingga iklim di Bumi akan berubah secara ekstrim juga.

Interaksi Bumi dan Bulan juga mengakibatkan terjadinya pengereman rotasi Bumi dan bertambahnya jarak Bumi-Bulan. Penyebabnya adalah gesekan yang terjadi antara air laut dengan daratan pada peristiwa pasang naik air laut. Menurut perhitungan, rotasi Bumi mengalami perlambatan sebesar 1,5 milidetik setiap abadnya dan akibatnya Bulan bergerak menjauhi Bumi sebesar lebih dari 3 cm setiap tahunnya. Dengan demikian, jutaan tahun dari sekarang periode rotasi Bumi akan sama dengan periode rotasi dan revolusi Bulan sehingga wajah yang sama dari Bulan dan Bumi akan selalu berhadapan. Saat itu, melihat Bulan adalah suatu hal yang tidak mungkin bagi penduduk di separuh belahan Bumi, karena posisi Bulan di langit akan selalu tetap. Kemudian karena jarak Bumi – Bulan membesar, ukuran sudut Bulan akan berkurang sehingga kita tidak akan dapat menyaksikan piringan Bulan yang menutupi seluruh piringan Matahari saat terjadinya gerhana Matahari total.

sumber: http://duniaastronomi.com/2009/08/mengenal-bulan-lebih-dekat/#more-251

Matahari, Bintang Terbaik Yang Kita Miliki

Matahari kita adalah sebuah bintang, yaitu bola gas panas raksasa yang mengeluarkan energi dan cahaya. Ukurannya begitu besar dibandingkan dengan Bumi dan planet-planet lainnya. Namun sebenarnya, Matahari termasuk bintang yang ukurannya biasa saja. Masih banyak bintang lain yang berukuran jauh lebih besar ataupun jauh lebih kecil darinya. Tetapi tetap saja Matahari adalah satu bintang yang sangat istimewa bagi manusia, Bumi, dan tata surya kita.

Matahari memiliki diameter 1,4 juta km dan massa 1,9 x 10^30 kg. Di galaksi Bimasakti, ukuran sebesar ini termasuk dalam 10% yang terbesar. Jauh lebih banyak bintang dengan ukuran dan massa yang lebih kecil (yang terbanyak adalah bintang dengan massa setengah massa Matahari).

Matahari (Sumber: wikipedia)

Matahari (Sumber: wikipedia)

Matahari adalah bintang deret utama dengan kelas G2. Materi penyusunnya adalah hidrogen sebanyak 70%, helium 28%, dan sisanya unsur berat lain. Permukaannya (fotosfer) bersuhu 5.800 K, sedangkan di bagian pusat suhunya mencapai 15 juta K. Cahaya Matahari yang berwarna putih kekuningan yang bisa kita lihat berasal dari lapisan fotosfer. Di lapisan ini terdapat banyak kejadian menarik, di antaranya adalah bintik Matahari, granulasi, prominensa, dan filamen. Di bagian luar terdapat atmosfer yang disebut korona. Bagian ini memiliki temperatur 5 juta K. Karena terangnya fotosfer, kita tidak dapat mengamati korona kecuali ketika terjadi gerhana Matahari total.

Sebagai sebuah bintang, Matahari memiliki pabrik pembangkit energi yang sangat aktif di bagian pusatnya. Di bagian yang kerapatannya sangat tinggi ini (150 kali kerapatan air), atom-atom hidrogen bereaksi membentuk helium dalam serangkaian reaksi. Reaksi penggabungan (fusi) ini menghasilkan energi yang sangat besar, yaitu 386 miliar miliar juta watt. Setiap detiknya, sebanyak 700 juta ton hidrogen diubah menjadi 695 juta ton helium dan 5 juta ton energi dalam bentuk sinar gamma.

Korona Matahari terlihat ketika gerhana Matahari total (Sumber: wikipedia)

Korona Matahari terlihat ketika gerhana Matahari total (Sumber: wikipedia)

Bintik Matahari adalah suatu area gelap di fotosfer yang suhunya lebih rendah relatif terhadap sekitarnya (3800 K berbanding 5800 K). Keberadaannya bergantung pada aktivitas medan magnet di Matahari. Dan jumlahnya akan meningkat atau menurun secara periodik, setiap 11 tahun sekali. Jika jumlahnya sangat banyak, maka kita sebut Matahari sedang berada dalam masa aktif. Diperkirakan puncak dari keaktifan Matahari yang berikutnya akan terjadi pada tahun 2013 nanti. Mungkin kita sering mendengar hal ini dari isu kiamat 2012. Namun tentu saja keduanya tidak ada berkaitan.

Diagram penampang Matahari (Sumber: wikipedia)

Diagram penampang Matahari (Sumber: wikipedia)

Sebagaimana manusia, bintang juga lahir, tumbuh besar, lalu mati. Semakin besar massa sebuah bintang, maka kala hidupnya semakin singkat dan sebaliknya. Usia Matahari saat ini, atau sama dengan usia tata surya kita, adalah sekitar 4,57 milyar tahun. Diperkirakan Matahari masih akan terus seperti sekarang hingga 5 milyar tahun lagi. Setelah itu, Matahari akan memasuki fase raksasa merah (red giant). Disebut demikian karena ukurannya akan membesar hingga 250 kali lipat dan mungkin akan mencapai orbit Bumi (sejauh 150 juta km).

Diagram Evolusi Matahari (Sumber: wikipedia)

Diagram Evolusi Matahari (Sumber: wikipedia)

Evolusi seperti ini adalah hal yang biasa untuk bintang bermassa kecil dan menengah. Di akhir kehidupannya, Matahari tidak akan menjadi supernova dan lubang hitam karena evolusi tersebut hanya untuk bintang bermassa besar. Setelah tahap raksasa merah, kemudian Matahari akan melontarkan lapisan luarnya hingga membentuk planetary nebula. Bagian yang tersisa dari Matahari hanyalah intinya saja, yang disebut dengan bintang katai putih (white dwarf). Akhirnya ia akan mendingin secara perlahan hingga milyaran tahun.

Peran penting Matahari bagi masyarakat sudah tampak dari berbagai peradaban kuno. Di jaman Yunani kuno Matahari disebut dan dipuja sebagai dewa Helios. Sedangkan di jaman Romawi Matahari diperlakukan sama dengan sebutan Sol. Matahari juga berperan penting di tata surya kita. Massanya mencapai 99,86% dari massa total tata surya. Hal ini menunjukkan betapa Matahari sangat dominan. Ikatan gravitasinya membuat planet-planet dan benda lainnya di tata surya bergerak mengelilingi Matahari secara teratur. Dan Matahari pun mengajak seluruh tata surya untuk mengelilingi pusat galaksi Bimasakti dalam periode sekitar 220 juta tahun.

Cahaya yang dipancarkan Matahari sangat membantu kita dalam banyak hal. Selain memberikan panasnya di siang hari, informasi yang ada di dalam cahaya Matahari berperan besar dalam pengetahuan yang kita miliki sekarang tentang bintang-bintang di alam semesta. Dalam jarak yang tepat, cahayanya juga memberikan jaminan terhadap kebutuhan energi yang diperlukan dalam kehidupan di Bumi.

Spektrum Matahari juga berjasa dalam banyak hal. Dahulu, saat spektrum Matahari dipelajari pertama kali, manusia menemukan unsur helium. Unsur ini dinamakan demikian karena saat itu hanya ditemukan di Matahari. Dan dari spektrum inilah kita mengetahui bahwa Matahari dan bintang adalah benda yang sejenis.

Singkat kata, Matahari adalah benda percobaan terdekat bagi astronom di laboratorium alam semesta dalam meneliti bintang. Berbagai misi luar angkasa yang khusus meneliti Matahari telah dan akan diluncurkan demi mengenal Matahari lebih dekat, seperti Pioneer, Helios, SOHO, Genesis, Stereo, dan lain-lain.

Sejak tata surya terbentuk hingga sekarang, peran Matahari dalam mendukung kehidupan di Bumi sangatlah besar. Namun tidak selamanya akan berjalan begitu, karena dalam evolusinya Matahari akan memanas dan membesar. Saat itu, Matahari sudah tidak lagi mendukung kehidupan. Bahkan ia akan menelan dan menghancurkan Merkurius, Venus, dan kemudian Bumi. Akankah kehidupan di Bumi saat itu sudah berpindah ke planet lain? Atau mungkin ke planet di bintang lain, galaksi lain? Sebaiknya begitu, tetapi siapa yang tahu.


sumber: http://duniaastronomi.com/2010/10/matahari-bintang-terbaik-yang-kita-miliki/#more-709

Materi Antar Bintang

Ketika sedang mengamati indahnya langit malam, pernahkah Anda bertanya-tanya tentang kekosongan pada ruang antar bintang. Apakah sama sekali tidak ada apa-apa di sana? Benarkah di alam semesta seluas ini, dengan jarak antar bintang yang berkisar ribuan atau bahkan) jutaan tahun cahaya, hanya diisi ruang kosong? Kalau Anda pernah menanyakan hal tersebut, tahukah Anda apa jawabannya?Sebenarnya, ruang antar bintang itu tidak kosong. Materi antar bintang (interstellar matter) adalah sebutan untuk pengisi kekosongan itu. Lalu, seberapa penting keberadaan materi antar bintang (MAB)? Sebenarnya penting sekali, karena sifat materi penyusunnya mempengaruhi apa yang kita pelajari dalam astronomi. Dengan mempelajari MAB, kita jadi tahu bagaimana MAB meredupkan, memerahkan, atau bahkan menghalangi cahaya bintang. Selain itu juga MAB memberikan petunjuk mengenai komposisi materi pembentukan bintang, karena bintang lahir dari MAB ini. Artikel kali ini hanya akan membahas pengaruh MAB terhadap cahaya bintang.

Secara umum terdapat dua jenis penyusun materi antar bintang, yang pertama adalah debu antar bintang dan yang kedua adalah gas. Masing-masing jenis materi ini memberikan pengaruh yang berbeda ketika diamati. Berikut ini akan saya bahas masing-masing dalam dua poin besar.
A. Debu Antar Bintang

Materi ini jauh lebih kecil kelimpahannya dibandingkan dengan gas antar bintang, namun pengaruhnya terhadap berkas cahaya visual lebih besar. Hal ini disebabkan ukuran partikelnya yang besar (dalam orde 1/1000 mm), bandingkan dengan panjang gelombang cahaya tampak (1/20000 mm), sehingga materi ini cenderung untuk menyerap dan menghamburkan berkas cahaya. Debu antar bintang ini tersusun dari partikel-partikel es, karbon, atau silikat. Karakteristik debu ini menghasilkan bermacam efek terhadap cahaya bintang, yang akan dijelaskan sebagai berikut.

i. Nebula Gelap

Ada daerah tertentu di ruang antar bintang yang memiliki kepadatan debu yang sangat tinggi, sehingga cukup untuk menjadi awan (nebula) yang kedap cahaya. Walaupun kepadatan partikelnya masih jauh lebih rendah dari pada di Bumi, namun besarnya awan ini mengakibatkan terhalangnya cahaya bintang. Celah gelap memanjang di daerah Cygnus dan Horsehead Nebulae (Kepala Kuda) di Orion adalah contoh nebula gelap, yang menghalangi datangnya berkas cahaya bintang ke arah pengamat.

Horsehead Nebula

Horsehead Nebula (Sumber: APOD)

ii. Efek Redupan

Sekumpulan kecil debu selain di nebula gelap dapat juga memberikan efek meredupnya cahaya bintang sekitar 1 magnitudo setiap 1 kiloparsek yang ditempuh cahaya tersebut. Hal ini memunculkan permasalahan ketika akan ditentukan jarak sebuah bintang. Karena dalam menentukan jarak, diperlukan perbandingan antara magnitudo semu dan mutlak. Harga magnitudo semu yang didapat akan mengalami kesalahan akibat dari efek redupan tersebut, sehingga menyebabkan kesalahan pada nilai jarak bintang. Untuk mengatasinya, perlu diketahui terlebih dahulu seberapa besar efek redupan yang dialami cahaya bintang tersebut.

iii. Efek Pemerahan

Penghamburan berkas cahaya tidak sama di semua panjang gelombang. Karena ukuran partikel debu yang kecil, maka hanya gelombang elektromagnetik yang mempunyai panjang gelombang yang pendek yang lebih terkena efek penghamburan ini. Artinya, hanya cahaya ungu dan biru yang paling terkena efeknya. Sementara merah dan jingga tidak mengalami halangan yang berarti ketika melintasi debu antar bintang. Akibat dari kekurangan cahaya ungu dan biru ini, cahaya yang sampai di Bumi akan tampak merah. Hal inilah yang disebut sebagai efek pemerahan.

iv. Nebula Pantulan

Trifid Nebula

Trifid Nebula/M20 (Sumber: APOD)

Hamburan oleh debu antar bintang, terutama cahaya biru, terkadang menerangi daerah di sekitarnya. Akibatnya, awan debu antar bintang ini akan tampak biru karena cahaya bintang di belakangnya melintasi awan debu ini. Contoh dari nebula pantulan ini adalah gugus bintang Pleiades di Taurus serta Trifid Nebulae di Sagittarius.

B. Gas Antar Bintang

Materi utama penyusun gas antar bintang ini adalah Hidrogen dengan sedikit Helium. Kepadatan gas dalam suatu ruang antar bintang biasanya mencapai 1 atom/cm3 , sementara di beberapa tempat, kepadatan partikel gas antar bintang dapat mencapai 105 atom/cm3 . Namun kerapatan ini masih jauh lebih rendah daripada kepadatan gas di Bumi, 1019 atom/cm3. Nebula gas ini dibagi dua, daerah H I dan H II.

i. Daerah H II, Nebula Emisi

Jika bintang muda dan panas (golongan B dan O) terletak dekat dengan nebula gas, maka pancaran ultraviolet dari bintang tersebut akan mengionisasi gas hidrogen yang terkandung di dalam nebula itu. Ketika inti atom hidrogen menangkap elektron yang lain, pada saat yang bersamaan dipancarkan pula radiasi elektromagnetik, dalam panjang gelombang cahaya tampak. Akibatnya, cahaya uv dari bintang diubah menjadi cahaya tampak oleh nebula gas ini. Jika dilihat spektrumnya, nebula ini memberikan garis emisi. Contoh nebula jenis ini adalah Nebula Orion di daerah pedang Orion, Nebula Lagoon dan Nebula Trifid di Sagittarius.

Great Orion Nebula

Great Orion Nebula (Sumber: APOD)

Ada dua macam lagi nebula emisi yang berbeda dengan yang disebut di atas. Kedua macam nebula ini dibentuk dalam evolusi bintang. Yang pertama adalah planetary nebula, yaitu ketika sebuah bintang berada dalam evolusi tahap akhirnya, melontarkan selubung gas yang didorong dari bintang akibat tekanan dalamnya. Selama proses ini, gelombang uv dari bintang meradiasi selubung tersebut, sehingga terjadi peristiwa yang sama seperti penjelasan sebelumnya. Akibatnya terlihat sebuah bintang di tengah-tengah awan gas. Contoh planetary nebula jenis ini adalah Nebula Cincin di Lyra.

Planetary Nebula

Planetary Nebula (Sumber: APOD)

Yang kedua adalah sisa ledakan supernova. Gas yang tersisa setelah ledakan bintang (supernova) menerima pancaran energi dari pusat nebula. Contohnya, Cygnus Loop.

Lagoon Nebula (Sumber: APOD)

Cygnus Loop (Sumber: APOD)

ii. Daerah H I, Awan Hidrogen Netral

Di daerah awan gas ini, tidak ada sumber gelombang uv yang dapat mengionisasi hidrogennya. Awan ini gelap, dingin dan transparan. Pengamatan objek ini bergantung pada sifat yang dimiliki oleh inti atom hidrogennya.

Diketahui bahwa pada elektron dan inti pada sebuah atom memiliki momentum spin. Keduanya dapat memiliki spin yang searah atau berlawanan. Dalam keadaan spin searah, atom memiliki tingkat energi yang lebih tinggi daripada spin berlawanan. Jika sebuah atom berada dalam keadaan spin searah, maka setelah 106 tahun atom tersebut akan berubah ke tingkat energi yang lebih rendah ( spin berlawanan ). Proses ini, disebut ’’electron spin flop’’, akan menghasilkan pancaran energi kuantum dengan panjang gelombang setara dengan gelombang radio, 21 cm. Maka, pengamatan yang telah dilakukan pun lebih banyak dilakukan oleh astronom radio.

iii. Molekul antar bintang

Pengamatan radio telah menghasilkan penemuan sejumlah senyawa dalam sebuah awan gas. Hal ini dapat diketahui dari sifat energi elektromagnetik yang dipancarkan maupun diserap oleh awan gas tersebut. Diantara yang diketahui adalah molekul-molekul organik, molekul yang menjadi dasar kehidupan.. Beberapa diantarnya adalah hidroksil radikal, amonia, air, metil alkohol, metil sianida, formaldehid, hidrogen sianida, dan karbon monoksida. Kelimpahan molekul-molekul ini jauh lebih kecil dari hidrogen.


sumber: http://duniaastronomi.com/2009/02/materi-antar-bintang/